Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)
نویسندگان
چکیده
Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C3N4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C3N4 nanosheets, and induces a charge transfer from S-g-C3N4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C3N4/Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C3N4/Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C3N4/Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability.
منابع مشابه
Graphene-Ag Hybrids on Laser-Textured Si Surface for SERS Detection
Surface-enhanced Raman scattering (SERS) has been extensively investigated as an effective approach for trace species detection. Silver nanostructures are high-sensitivity SERS substrates in common use, but their poor chemical stability impedes practical applications. Herein, a stable and sensitive SERS substrate based on the hybrid structures of graphene/silver film/laser-textured Si (G/Ag/LTS...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملGraphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
Graphene oxide (GO) is an emerging material for surface-enhanced Raman scattering (SERS) due to its strong chemical enhancement. Studying the SERS performance of plasmonic nanoparticle/GO hybrid materials at the single particle level is crucial for direct probing of the chemical effect of GO on plasmonic nanoparticles. In this work, we integrate GO and shape-controlled Ag nanoparticles to creat...
متن کاملUnification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles
stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...
متن کاملA durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.
The application of Ag nanostructures to surface-enhanced Raman scattering (SERS) is hindered by their chemical instability. Fabrication of durable Ag-based SERS substrates is therefore of great significance in practical applications. In this work, ultrathin C-layer-encapsulated Ag nanoparticle arrays (UCL-Ag-NAs) are successfully fabricated on the surface of indium-tin-oxide (ITO) glass, using ...
متن کامل